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I. INTRODUCTION

It is well known that the Bernstein polynomials Bn(f;x), n = 1, 2, , .. , of a
convex functionf(x), satisfy BnCf;x);;? f(x) for all n and all x E [0,1] (see e.g.
[11]). It has also been shown (by B. Averbach) that iff(x) is convex, then the
sequence {Bn(f;x)}::,~o is a monotone decreasing sequence for each fixed x,
x E [0,1] (see [11]). These results have been extended to include a class of
approximation formulas, by Karlin ([3] and [4]).

Conversely, it has been stated that if f(x) is continuous on [0, I] and the
inequality

Bn(f; x) ;;? f(x), for all x E [0, I],

persists for all n;;? I, thenf(x) is convex (see [8]). Furthermore, it has been
shown that the condition

for all x E [0,1], n = 1,2, ...,

suffices to ensure the convexity of a twice continuously differentiable function
(see [7]).

The main contribution of the present paper is the extension of the converse
theorems to quite a wide class of positive linear operators. This is done in
Section III.

In Section II we present extensions of the first "direct" theorem, describing
the implications of the assumption of convexity. We show that the results for
Bernstein polynomials described above, extend to a wide class of linear
approximators, which includes, but is much larger than, the classes of sum
mability formulas discussed in [3J and [4].

We obtain all of the aforementioned results for functions which are convex
with respect to an Extended Complete Tchebycheff system. This convexity
will be defined at the end of the Introduction. We shall not give proofs of
properties of such functions which will be used in the sequel. The reader is
referred to [6] and (12] for a thorough discussion of properties of Extended
Complete Tchebycheff systems and of convexity with respect to such systems.

In the last section we give several applications. These include the afore
mentioned results for Bernstein polynomials, some new theorems on approxi
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GENERALIZED CONVEXITY 421

mation formulas involving convolutions of a distribution function, and an
example involving the Weierstrass kernel on (-co, co).

We proceed now with definitions of the basic concepts. Let (uo, UI) denote
throughout the paper an Extended Complete Tchebycheff system (ECT
system) on [a,b]. With no loss of generality (see [6]) we may assume that
uo(t) > 0 on [a,b] and that UI(t) can be represented in the form

UI(t) = uo(t) t WI (t) dt

where WI(t) > 0 on [a,b].

DEFINITION 1. A linear combination of the form couo(t) + c. UI(t) will be
called aftrst degree u-polynomial.

DEFINITION 2. A function f(t) defined on (a,b) is said to be convex with
respect to (UO,UI), provided

uo(x.) UO(X2) UO(X3)
UI(XI) UI(X2) UI(X3) ;;. 0, a < XI < X2 < X3 < b. (1)
f(xl) f(X2) f(X3)

Note that if such anf(t) belongs to C[a,b], then inequality (1) will hold, by
continuity, for all a < XI < X2 < X3 < b.

The set offunctionsf(t) satisfying (1) is denoted by 'ff(UO,UI)'
The case of ordinary convexity is obtained when we choose UI(t) == t l,

i = 0,1, .... A kth degree u-polynomial will then be an ordinary polynomial of
degree k.

II. DIRECT THEOREMS

Let [a,b] be a finite interval. We consider in this and the next section, real
functionals and operators defined on C [a, b]-the space of functions con
tinuous on [a, b]. The results can be readily extended, with almost identical
proofs, to functionals and operators defined on suitable subsets of C(a,b),
C[O,co) or C(-co, co). These subsets are determined by imposing suitable
order of growth conditions on the functions. Examples of such extensions,
for the case of ordinary convexity, will be given in Section IV.

We recall the Riesz representation theorem (see e.g. [10]) which states that
every real linear functional 4>(f), defined on C[a,b], can be represented by a
signed measure of bounded variation dIL</>, so that

for aUfE C[a,b] (2)

and IL</>(a) = O. We note that 4>([) is a positive linear functional (p.l.f.) if and
only if the associated measure dIL</> is a nonnegative measure.
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LEMMA 1. Let IX be a point in [a, b] and let 1>(/) be a positive linear functional
defined on C[a,b] which satisfies the conditions

1>(uo) = UO(IX),

1>(Ut) = U1(1X).

(3)

(4)

If the support of the associated measure dJ1-¢ is contained in [IX, b] or in fa, IX],
then dJ1-¢ must reduce to the Dirac measure with support at t = IX.

Proof (I). Suppose that the support of dJ1-¢ is contained in [1X,b].
If IX = b, then in view of relation (3), the lemma is obviously true. Assume

now that IX # b and consider the function get) defined by

(

0,

g(t) = ()_U1(1X) ()
UI t ( ) Uo t ,

Uo IX

a < t < IX,

IX < t < b.

Since (uo, Ut) is an EeT-system, it follows that g(t) is a nonnegative function
on [a,b] which is strictly positive for t > IX. Thus, we have

1>(g) ;;, 0, (5)

with strict inequality holding, unless the support of dJ1-¢ consists of the point
IX alone.

On the other hand, the assumption on the support of dJ1-¢, together with
relations (3) and (4), yield

Hence, the support of dfh¢ must consist of the point IX alone and in view of
relation (3), the lemma is proved for this case.

(II). Suppose now that the support of dJ1-¢ is contained in fa, IX]. If IX = a,
the lemma is clearly implied by (3).

If IX # a, consider the function h(t) defined by

a < t < IX,

IX < t < b.

The rest of the proof proceeds with arguments identical with those used in
the proof of case (I).
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Lemma 1 yields immediately the following

COROLLARY 1. Let cP(f) be a p.l.f defined on C [a, b), which satisfies

{
cP(uo) = uo(a),
cP(Ul) = UI (a),

then cP(f) =.f(a),for aUfE C[a,b).
We shall now prove the first "direct" theorem.

THEOREM 1. Let ce be a point in (a, b) and let cP(f) be a positive linearfunctional
defined on C[a,b), which satisfies (3) and (4). Then for any function f(t) of
C[a,b] () ~(UO,UI) which does not coincide with afirst-degree u-polynomial on
any open interval containing ce, we have

cP(f) ;. f( ce),

where equality holds ifand only if
cP(f) = f(ce) , for every fE C[a, b].

(6)

(7)

Proof Letf(t) be an arbitrary function of C[a,b] () ~(UO,UI)' We recall
that a function which is convex with respect to an ECT-system (uo, UI), possesses
a right derivative fR'(t) and a left derivative fL'(t) at all points of (a, b), and
that these one-sided derivatives are equal almost everywhere. Furthermore,
the functions

1 [f(t)]'
WI (t) uo(t) R'

1 [f(t)]'
WI(t) uo(t) L'

where the subscripts Rand L denote right and left derivatives, respectively,
are monotone nondecreasing on (a,b) (see [6]).

We can, thus, choose a number c, such that

{

c = WI~ce)[~~~J,
1 [f(OC)]' 1 [f(OC)]'

WI(ce) uo(ce) L < c < WI(OC) uo(oc) R'

Then we have,

otherwise.

and

1 [f(t)]'
C~Wl(t) uo(t) R'

1 [f(t)]'
c;. WI(t) uo(t) L'

for all t > oc,

for all t < oc.

(8)

(9)

The assumption thatf(t) is not identical with a first-degree u-polynomial on
any open interval containing ce, implies that neither {[I {WI(t)] [f(t){uo(t))R'} nor
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{fl/Wj(t)][I(t)/uO(t)]L'} can be constant on an open interval containing IX.
Hence, at least one of the inequalities (8)-(9) is a strict inequality.

Consider now the function

[
UI(IX) ] I(IX)

l(t) = C Uj(t) - UO(IX) uo(t) + UO(IX) uo(t).

Relations (3) and (4), on conjunction with the linearity of ep(f), yield

(10)

(11)

Observe, next, that relation (8) and the definition of Wj(t), yield, for t> IX,
the following result:

I(t) - I(IX) uo(t) = uo(t) [/(t) _ I(IX)]
UO(lX) uo(t) UO(IX)

Jt[/(t)]' Jt 1 [/(t)]'
= uo(t) -() dt = uo(t) -() -() wj(t)dt

'" Uo t R '" Wj t Uo t R

> uo(t) f: cWj(t)dt

= cuo(t) [f~ wj(t)dt - 1: wl(t)dt]

= C[uo(t) t WI (t) dt - ;:~~ uo(IX) J; WI (t) dt]

= c[UI(t) - :~i:~ uo(t)l
Performing a similar computation with the aid of relation (9) for t < lX, we
find

for all t < lX.

for all t # lX, t E (a, b].

Combining both inequalities, we obtain

I(IX) [ Uj(lX)]
l(t) - UO(lX)UO(t) > C Uj(t) - UO(lX)UO(t) ,

Since both sides are zero for t = IX, we find, using the definition (10), that

f(t) > I(t), for all t E (a,b]. (12)
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Relations (12) and (11) imply that

ep(f) ;;. ep(/) = f(IX).

425

(13)

Thus, the first statement of the theorem has been proved, and to complete
the proof, we need only examine the circumstances under which equality holds.

Tracing the inequalities which led to (12), we see that the remarks following
relation (9) imply that at least one of the following strict inequalities holds:

or,
f(t) > I(t),

f(t) > I(t),

for all t > IX,

for all t < IX.

(14)

(15)

We assume now that equality holds in (13), and distinguish between the
following two cases:

(I). Suppose that (14) holds. Consider the function

get) = {jet) -/(t),
a < t < IX,
IX < t < b.

In view of (12) and the assumption of equality in (13), we have

o= ep(f- I) ;;;. ep(g). (16)

Since get) is a nonnegative function which is strictly positive for t> IX, and
since ep is a p.l.f., we deduce that equality holds in (16) and that the associated
measure dp,¢' can have no mass on (lX,b]. This is equivalent to the statement
that the support of dp,¢' is contained in [a, IX]. Noting that (3) and (4) are
satisfied, and appealing to Lemma 1, we deduce that dp,¢' reduces to the Dirac
measure with support at t = IX. This is equivalent to (7).

(II). Suppose that (15) holds. A similar discussion involving the function

h(t) = {f(t) -/(t),
0,

a < t < IX,

IX < t < b,

and invoking Lemma 1, proves that equality in (13) implies (7), in this case as
well. This concludes the proof of Theorem 1.

Remark. Inequality (6) may be proved also by using the concept of dual
convexity cones. Specifically, one can use Theorem B of [13] (which is essen
tially contained, albeit in a weaker form which is insufficient for our purpose,
in [5]) to obtain the inequality. However, it is much harder to analyze the
circumstances under which equality holds. We preferred the proof presented
here, since the analysis of the circumstances of equality plays an essential role
in the converse theorems.
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Consider now a positive linear operator (p.l.o.) transforming a function
fE C[a,b] into a function defined on [c,d], a <; c < d <; b.

Noting that the restriction of such an operator, obtained by fixing a point
x = 0:, is a positive linear functional, the following theorem can be easily
derived from Theorem 1 and Corollary 1.

THEOREM 2. Let L(f;x) be a positive linear operator defined on C[a,b], which
satisfies the conditions

L(uo;x) == uo(x), X E [c,d],

L(u); x) == u)(x), x E [c, d].

Then,jor every functionfE C [a, b] n rt'(uo,u), we haL'e

(17)

(18)

and
L(f; x) ;;. f(x),

L(f; a) =f(a),

for c <; x <; d,

L(j;b) = f(b) ,

(19)

(20)

whenever a = c and b = d.
Equality sign in (19) can be achieved at a point x = 0:, C < 0: < d, only ifeither

f(t) coincides with a first degree u-polynomial on some open interval containing
0:, or L(f; et) ==f(et),for allfE C[a, b].

We shall now show that conditions (17) and (18) are indispensable; explicitly,
we shall prove

THEOREM 3. LetL(j; x) be apositive linear operator such thatfor everyfunction
f(t) E C[a,b] n rt'(uo,Ut), inequality (19) holds. Then (17) and (18) have to be
satisfied.

Proof Consider the functions uo(t) and -uo(t). Both belong to

C[a,b] n rt'(uo,ud,
so that (19) implies

L(uo;x);;. uo(x),

-L(uo;x) =L(-uo;x);;. -uo(x).

These inequalities imply (17). Similarly, the necessity of (18) is implied by the
fact that both Ut(t) and -Ut(t) belong to C[a,b] n rt'(UO,Ul)'

Remark. Let C[a,b] be replaced by C(l), where lis any real interval (finite
or infinite, closed or open). Consider a subclass :F of C(l). Suppose (uo,u)
is an BCT-system on I such that Ut E :F, i = 1, 2, and define convexity with
respect to (uo, u) as in Definition 2.
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ASSERTION. In such a set-up, Lemma 1and Theorems 1-3 are satisfied, when
the functionals and the operators are defined on:F.

This assertion follows by a verbatim retracing of the proofs of Lemma 1
and Theorems 1-3. We shall show in Section IV, that the theorems for the
approximation formulas discussed in [3] and [4], are covered by this assertion.

III. CONVERSE THEOREMS

We shall show in this section that convexity properties of a function can
be deduced from the behaviour of its approximations by means of positive
linear operators.

We start by introducing some definitions.

DEFINITION 3. A sequence of positive linear functionals {tPif)}'::-1> defined
on C[a,b], is said to be strongly centered at the point 01:, a < 01: < b, iffor every
fixed pair of values 7) > 8 > 0 such that a < 01: ± 7) < b, we have

lim fLn[OI: + 'l'},b] =0 lim fLn[a,OI:-7]] =0 (21)
n....«>fLn[OI: + 8,01: + 7)] , n....«>fLn[OI: - 7), 01: - 8] ,

where dfLn{t) is the Riesz measure associated with tPn(j).
It is implicitly assumed in the definition that the quotients are meaningful

for large enough n, e.g., that fLn[OI: + 0,01: + 7]] > 0 for n > N, say.

DEFINITION 4. Let {Ln(j;X)}~=1 be a sequence of positive linear operators
transforming functionsfE C[a,b] into functions defined on [c,d], a,;;;; c < d,;;;; b.
The sequence is said to be strongly centered on (c,d), if for each fixed z,
c < z < d, the sequence ofp.l.f's{Ln(f;z)}~=1 is strongly centered at z.

The requirement that a sequence of p.l.f's be strongly centered at 01: is a
strong requirement. For example, as we shall see later (cf. Lemma 3), it
essentially ensures that tPn(j) -+ f(OI:) for allfE era,b].

We come now to the main theorem of this section.

THEOREM 4. Let {4,lf; x)}~=1 be a sequence ofpositive linear operators which
is strongly centered on (c,d), satisfying

c,,;;;; x,,;;;; d; i = 0,1; n = 1, 2, .... (22)

If, for afunctionf(t) E era, b], the inequality

Ln(j;x) ~f(x), for all x E (c,d)

is validfor all n, thenf(t) belongs to ~(uo, Ul) on [c, d].

(23)
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Proof Suppose that conditions (22) are satisfied and that f(x) does not
belong to ct'(uo,ut> on [c,d]. We shall prove that these assumptions imply
that (23) cannot be valid.

Sincef(x) does not belong to ct'(uo, u\), there exist three points

such that
Uo(Xj) UO(X2) UO(X3)
Uj(x\) U\(X2) Uj(X3) < o.
f(x\) f(X2) f(X3)

Define the functiong(x) on [a,b] by

(24)

g(x) = ,---~__1_~-;

I
uo(x\) UO(X3) I
Uj(Xj) U\(X3)

Uo(X\) UO(X3) uo(x)
Uj(Xj) U\(X3) Uj(x)
f(xj) f(X3) f(x)

(25)

Note that the denominator is strictly positive, since (UO,Ul) is an EeT-system.
By expanding the determinant by its last column, we see that g(x) can be
expressed as

g(X) = f(x) - OCUj(x) - f3uo(x), (26)

where oc and f3 are constants (depending on XI' X3, Uo, U\ and f). In terms of
g(x), relation (24) is equivalent to

(27)

and relation (25) implies that

(28)

Set M = max g(x)/uo(x). Relations (27), (28) imply that M> 0 and that it
XE[XI. X3]

is attained only at interior points of [Xl>X3]' Set

y = max {x; x E [Xl> X3], g(x) = M},

Relation (28) implies that XI < Z >(; Y < X3'
Define now the first-degree u-polynomiall(x) by

lex) = OCUj(x) + f3uo(x) + Muo(x). (29)

In view of the definitions of g(x), M, y and z, the following relations hold:

fey) = ley),

f(x) < lex), for x E [Xl> z) U (y, X3],

f(x) >(; lex), for x E [Xl>X3]'

(30)

(31)

(32)
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Set

Mo = max Il(t) - f(t)1
tE[a, b)

429

"12 = Xl - Y,

mo = min (l(t) - f(t)), for t E[Xl> Xl; z] U [Xl;Y, Xl]'
Observe that 'f), > 0, > 0, 'f)2 > 02 > 0, and that the sequence {Ln(f; y)}~=, is

strongly centered at y. Thus, (21) holds for both pairs of (o,'f)). Choose
E = (mo(2Mo), and note that E > 0 by virtue of the continuity of l(t) - f(t) and
relation (31). By appealing to (21), and setting diin(t) = dP-n(y;t), we deduce
that there exists an N such that

iin[Y + "12, b] < (mo(2Mo) iin[Y + 82, Y + "12], for n > N,} (34)
iin[a,y- 'f)d < (mo/2Mo)iiAY - 'f)I>Y - od, for n > N.

Using now relations (32)-(34), we have the following chain of inequalities
forn > N,

Lll- f; y) = J: (1- f)diil t )

J
X

3 JXl fb;;;. (1- f) diin(t) - Mo diin(t) - Mo diiit)
Xl a .. Xl

;;;. J(Xl+Zl/2 (1- f)diin(t) + JX3 (l-f)d-n(t)
Xl (x3+Yl/2 P-
- MO{iin[a, Y - 'f)d + iin[Y + 'f)2, b])

;;;. mo{iin[Y - 'f)" Y - od + iin[Y + 02' Y + 'f)2]

- Mo{iin[a, Y - 'f)d + iin[Y + 'f)2, b]}

> Mo{iin[a, Y - 'f)d + iin[Y + 'f)2' b]} ;;;. O.

Thus, we have
for n > N.

Since l(x) is a first-degree u-polynomial, (22) implies that Ln(l; y) = l(y),
n = 1,2, .... Using (30), we obtain

Llf; y) <f(y), forn > N,

which clearly demonstrates that (23) does not hold. This completes the proof
of the theorem.

We prove, next, the following lemma, showing an implication ofthe assump
tion of strong centeredness.
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LEMMA 3. Let a sequence ofpositive linear functionals {CPn(f)}'::~1 be strongly
centered at tx, and let it satisfy

Then

limtPn(uo) = uo(tx).
n.... '"

limtPif) = f(tX), for allfE C[a,b].
n....'"

(35)

(36)

Proof Note, first, that (35) implies that there exists a K such that
!tPn(UO)! < K, n = 1,2, .... Set now k = min uo(t). Then k > 0, and we have

tE[a, b]

Iln(a,bJ = J: dlJ-n(t) ~ (Ilk) J: uo(t)dlJ-it) ~ (Klk),

where dlJ-nCt) is the Riesz measure associated with tPn(f).
Let now 'TJ > 0, such that a < tx ± YJ < b, be given. Then

lim{lln[lX + YJ,bJ + Iln(a, ex - YJ]} = O.
n....'"

Indeed, (37) implies that, for all n,

n = 1, 2, ..., (37)

(38)

{lln[O:: + YJ, b] + Iln(a, 0:: - 'TJ]} < (Klk) {lJ-n(tX + 'TJ, ~~[;,~j[a, 0:: - 1]]}

~ (K/k) { IJ-n[tX + 1],b] + Iln(a, tx - 'TJ] },
IJ-n(tX + 8, tx + 'TJ] IJ-n(tX - 'TJ, tx - 8J

where 'TJ> 8 > O. Since the last expression tends to zero by virtue of (21),
relation (38) is established.

Let now anfE C[a,b] and an E > 0 be given. By uniform continuity, we
may choose an 'TJ > 0 such that

I
f(tX) I Ek

f(t) - uo(tX)uo(t) < 3K' iflt-tXl <1]. (39)

Using, next, relations (35) and (38), we choose an No such that, for n > No
we have,

\
f(tX) [tPn(uo) - uO(lX)JI < E/3, Iln[O:: + 'TJ,b] + IJ-n(a, tx -1]] < (E/3)(1/Mo),(40)

uo(a)

where M o = max If(t) - f(lX)Uo(t)/uo(a)l.
tE[a,b]

Computing now, for n > No, the difference /tPn(f) - f(a)/, we find, by using
(37), (39) and (40), that
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Since € > 0 was arbitrary, this proves the lemma.

THEOREM 5. Let {Ln(f;X)}~=1be a sequence ofpositive linear operators which
is strongly centered on (c,d) and satisfying (22). /f,for afunctionf(t) E C[a,b],
the inequality

n= 1, 2, ..., (41)

is satisfiedfor each x E (c,d), thenf(t) belongs to ~(UO,Ul) on [c,d].

Proof Since {Ln(f;X)}~=1 is strongly centered on (c,d), Lemma 3 implies
that

lim Ln(f; x) = f(x), for all x E (c, d). (42)

We shall show that from (42) and (41) it follows that

LnCf;x) > f(x) , forallxE(c,d),n=1,2,.... (43)

Indeed, if for some point Xo E (c,d) and some natural number N, the reverse
inequality holds, i.e.,

then, by (41), for all n;;;;. N we have

Ln(f; xo) < LN(f; xo) < f(xo),

which is impossible, by virtue of (42).
Hence, relation (43) holds, and the theorem follows by appealing to Theorem

4.

Remark 1. There exist examples of sequences of positive linear operators
{Ln(f;x)}~=J converging uniformly tof(x) on [a,b] for which the "converse"
theorem does not hold.
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Remark 2. Note that all the results of this section remain valid for operators
and functionals defined on the space of functions which are continuous and
bounded on the open interval (a,b).

IV. ApPLICATIONS

In this section we shall present several applications of the foregoing analysis.
These include the results on Bernstein polynomials mentioned in Section I
and some general, new theorems involving operators which arise out of
Probability Theory considerations. An example involving the Weierstrass
kernel on (-GO, GO) is also discussed.

1. BERNSTEIN POLYNOMIALS.

The nth order Bernstein polynomial BnCf;x) is defined, for fE erO, 1] by

0,,;;;x,,;;;l;n=1,2, .... (44)

(45)

for s < nz.

The sequence {Bn(f;X)}:~1 is clearly a sequence of p.I.o's. Consider the
ECT-system (1, t) and note that a simple computation yields

BnCl,x):= 1, n = 1, 2, ,
Bn(t;x):=x, n=1,2, .

We shall now prove that the sequence {Bn(f;X)}:~1 is strongly centered on
(0,1). Indeed, let z be a point in (0, 1). The Riesz measure dttnCt) corresponding
to BnCf;z) is a discrete measure with n + 1 atoms of mass at the points iln,
i = 0, 1, ... , n. The mass at iln is given by

G) zl(1 - z)n-I = b(i; n, z).

Hence, strong centeredness of {Bn(f;Z)};:'~l at z is equivalent to the following
statement:

For all 'YJ > S > °such that 0 < Z ± 'YJ < 1, we have

2: b(i;n,z) 2: b(i;n,z)
lim l/n;'z+'1 ... = ° lim l/n",z.='1 = 0 (46)
n->ro 2: b(i; n, z) , n->oo 2: b(i; n, z)

z+1]~i/n~z+5 z-1J~i/n~z-8

We shall prove the relation on the right. The other relation follows in
precisely the same way. Denote the quotient on the right by f3(n;'fJ, 0). The
following inequality holds for the binomial coefficients (see [2], Vol. I, p. 141,
Theorem 2):

s (n-s+ 1)
2: b(k;n,z)";;;b(s;n,z)'( 1) ,

k=O n + z - s
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Taking s = [nz - 7Jn], (where [x] denotes, as usual, the integral part of x),
we thus have for the numerator of f3(n; T), 0), the estimate

. (n-[nz-'l]n]+l)z
L b(l;n,z),;;;; b([nz - 'l]n];n,z)' ( 1) [ ]

iln";;%-7/ n + z - nz - 7Jn

b([ ].). [n +2 - nz + 7Jn] z
,;;;; nz - 7Jn ,n, z

7Jn + z
,;;;; Cb([nz -7Jn];n,z),

where C is a positive constant, not depending on n.
On the other hand, using the fact that the binomial coefficients b(k;n,z)

are nondecreasing in k for °< k < nz, we find

L b(i;n,z);;> ([zn - on] - [zn -1)n])b([nz -1)n];n,z)
%-7/";; iln ;.%-<'1

;;> [neT) - 0) -I]b([nz - T)n];n,z).

Combining the two estimates, we obtain

C
f3(n; 1), 0) ,;;;; n('l] - 0) - 1'

This clearly implies that
limf3(n; 'l], 0) = 0,

n = 1, 2, ....

proving the right-hand side of (46).
This establishes the strong centeredness of the sequence {Bn(f;X)}~~l on

(0,1). Thus, we may apply Theorems 2, 4 and 5 to deduce:
(a) A necessary and sufficient condition for a functionf(x) E C [0, 1] to be

convex on [0,1], is that Bn(f;x);;>f(x) for all n and all x E (0, 1).
(b) If Bn(f;x) ;;> Bn+1(f;x) for all n and all x E (0,1), and f(x) E erO,l],

thenf(x) is convex on [0,1].
We recall here, for the sake of completeness, that the condition in (b) is

also necessary (see Section I).

2. ApPROXIMATIONS ON A FINITE INTERVAL INVOLVING CONVOLUTIONS.

Let G(t) be a distribution function of a positive random variable X which
takes values only on [O,b], b > 1. Let it be so normalized, that

E[X] := f: t dG(t) = 1,

i.e., the expectation of the random variable is 1.
Define a squence of positive linear operators {Un(f;X)}~~l'by

(47)

fnb (tX)Un(f; x) = 0 f n dG(n)(t), n = 1, 2, ... , (48)
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where G(n)(t) is the n-fold convolution of G(t). These operators are defined
on C[O,b], transforming a function of C[O,b] into a function defined on [0,1].

Consider the ECT-system (1, t). By virtue of G(n)(t) being a distribution
function, it follows that

n = 1,2, .... (49)

We now make use of the following standard result from Probability Theory
(see e.g. [2], Vol. 2): Let XI' X2, ••• , Xn be independent, identically distributed,
random variables with a common distribution function G(t), and let E[Xd,
i = I, 2, ... , n, denote the expectation of the ith random variable. Then

n [ n ] JnbnE[XJ= 1~IE[Xd=E I~ XI = 0 tdG(n)(t).

Since in the case under consideration, E[XJ = 1, we have

r
nb

UnCt; x) = (xtjn) dG(n)(t) == x,
• 0

n= 1, 2, .... (50)

LEMMA 4. With the above definitions, if X is nondegenerate, then {Un(f;X)}~=l

is strongly centered on (0,1).

Proof Let z be a fixed point, °< z < 1. Then

J
nb JbZUnCf;z) = 0 f(tzjn)dG(n)(t) = 0 f(t)dG(n)(tnjz).

Thus, diinCt) = dt-Ln(z;t) = dG(n)(tn/z), and it is defined on [O,bz].
Strong centeredness of the sequence {Un(f;Z)}::"~1 at Z will thus be proved,

if we show that for all 7) > 0 > 0 such that 0 ~ I ± 7) ~ b, the limit relations

(51)

hold.
We shall prove the relation on the left. The other one follows in precisely

the same way.
Denoting the quotient on the left by f3(n; 0, 7)), and making obvious changes

of variable, we find

fbZ Ibn_ dG(n)(tn/z) dG(n)(t)
f3[n-o = t-Ln[z + 7)z,bz] = (I+'7)Z = (I+'7)n ._.

, ,'I}] P:n[Z + OZ, Z+ 7)Z] f<!+'7)Z dG<n)(tnjz) f(l+'7)n dG(n)(t)
(I+O)Z O+o)n
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Employing probabilistic interpretations, and denoting 27~1 Xi by Sm we
have

(52)

In order to prove that fJ(n;8,n) --'J- 0, we make use of the following recent
results of Petrov [9] (adapted for the case of a bounded random variable):

Set, for h > 0,

(53)

R(h) = f: eht dG(t),

m(h) = R~h) f: tehtdG(t),

2(h) = dm(h)
a dh .

We remark that limm(h) = E(X), limm(h) = b, and m(h) is a strictly increas-
h->O h-->oo

ing function.

THEOREM A [9]. Let Xl> X2, ••• , be a sequence ofindependent random variables
having the same nonlattice distribution G(t). Let c be any constant satisfying
E[X] < c < b. Then:

exp{n[logR(h) - hc]}
Pr{Sn;;;' nc} = ha(h) (27Tn)l/2 - (1 +0(1))

as n --'J- 00. Here h is the unique real root of the equation m(h) = c.

THEOREM B [9]. Let Xl> X2 , ••• , be a sequence ofindependent random variables
having the same lattice distribution G(t) (such that only values of the form
a + kH, k = 0, ±1, ±2, '" are taken with positive probability). Let c be any
constant satisfying E[X] < c < b. Then

HeXp{n[IOgR(h)-hC]}( (I))
Pr{Sn;;;' nc} = a(h)(1 _ ehH)(27Tn)1/2 1 + 0 Ii

(54)as n --'J- 00.

as n --'J- 00. Here h is the unique real root of the equation m(h) = c.
We remark that results of a similar nature have been obtained in [1].
Returning to the case under consideration, we observe that E[X] = 1, and

that ,8[n; 8,7]] --'J- 0 as n --'J- 00, iff

oc[n' 8 ] = Pr{n(l + 7]) < Sn} --'J- 0
,,7] Pr{n(1 + 8) < Sn}
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for n > N, (55)

Appealing to Theorems A and B, we deduce that there exists an N, such that

a[n- 8 ],,;:: 4 exp{n[log R(hz) - hz(1 + ?])]. u(h j )

, ,?] ~ exp{n[log R(h]) - h j (1 + 8)] u(hz)'

where u(h) = ha(h) for the case of a nonlattice distribution, and

u(h) = a(h) (1 - ehH)

for the case of a lattice distribution. Here hz and hI are defined by:

m(h j ) = 1+ 8,}
m(hz) = 1 +?].

Set
Q(x) = log R(h) - hx,

(56)

(57)

where h is defined by m(h) = x.
Then using (55), (56), and the fact that u(hJ and u(hz) are fixed, (54) will

follow if we prove that Q(x) is a strictly decreasing function for x > 1.
Computing the derivative of Q(x), we obtain

Q'(x) = _1_ R'(h)' dh _ x dh _ h
R(h) dx dx

dh
= [m(h) - x] dx - h = -h < 0.

This proves that the right-hand side of(55) tends to zero as n tends to infinity,
and consequently so do a[n;8,?]] and ,B[n;8,?]]. This demonstrates that the
sequence {Un(J,Z)}::'=l is strongly centered at z. Since z was an arbitrary point
of (0, 1), the proof of the lemma is complete.

Having Lemma 4 as well as relations (49), (50) at our disposal, we can apply
theorems 2, 4 and 5 to deduce:

THEOREM 6. Let G(t) be a distribution function of a nondegenerate positive
random variable which takes values on [O,b], and let it be normalized by (47).
Let the operators Un(f;x), n = 1, 2, ... , be defined on C(0,b1 by (48). Then

(a) A necessary and sufficient conditionfor afunction ofC[O,b] to be convex
on [0,1], is that Un(f;x) > f(x),Jor all n and all x E [0,1].

(b) If Un(f;x) > Un+1(f;x)for all n and all x E (0,11, and if f(x) E C[O,b],
then f(x) is convex on (0,1].

Remark. The condition formulated in (b) is also a necessary condition for
the convexity of f(x). This follows from a result due to Marshall and Proschan
(see (4], Theorem 3.8).
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We may obtain similar results by using other approximation formulas,
defined as follows:

Let {Git), °< x < I} denote a family of distribution functions of positive
random variables taking values on [0, l/x], such that

Ill'"
o tdG",(t)=1.

Define a sequence of positive linear operators {VnCf;X)}~=hby

(58)

Vn(f; 1) = f(I),
and

jn/'" (tX)VnCf;x) = 0 f -;; dG~n)(t),

Vn(f; 0) = f(O),

n = 1, 2, ... ; °< x < 1,

n= 1, 2, ....

(59)

(60)

These operators are defined on qO,I], transforming a function of qO,I]
into a function defined on [0,1].

The theory developed in this subsection for the operators Un(f;x), n = 1,
2, ... , goes over with no changes, and we have (incorporating the result quoted
in the remark following Theorem 6)

THEOREM 7. Let {Gx(t), °< x < I} be a family of distribution functions of
nondegenerate positive random variables which take values on [0, l/x] and are
normalized by (58). Let the operators Vn(f;x), n = 1, 2, ... , be defined on
qo, 1] by (59)-(60). Then

(a) A necessary and sufficient conditionfor afunction fE C[O, 1] to be convex
on [0,1], is that Vn(f;x);> f(x),for all n and all x E [0,1].

(b) A necessary and sufficient conditionfor afunction fE C[O, 1] to be convex
on [0,1], is that Vn(f;x);> Vn+l(f;x),for all n and all x E [0,1].

Remark. The corresponding results for Bernstein polynomials are included
in Theorem 7. We need only choose Git), 0< x < 1, to be the distribution
function of the random variable taking the value °with probability 1 - x
and the value l/x with probability x.

3. ApPROXIMATION ON [0,(0) INVOLVING CONVOLUTIONS.

The applications in this subsection involve the approximation methods
discussed in [4]. Explanation for the terminology used here can be found in
that monograph.

Let get) be a P6lya Frequency (PF) density function of a positive random
variable X, and let it be so normalized that relation (47) holds for

G(t) = f~g(x)dx,

where b is replaced by 00.
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Let Y denote the set of all functions f(t) which are continuous on [0,(0)
and grow to infinity slower than any exponential, i.e.,

1· f(t) - 0
Im-:rJt - ,

t-.oo e
for all 1] > O. (61)

Let the positive linear operators Tn(f;x), n = 1, 2, ..., be defined on Y by

Tn(f;x) = f: f(txln)g(n>(t)dt, n = 1,2, .... (62)

The existence of these integrals for functions of Y follows from rate of
decrease properties of PF density functions (for a proof see [4]).

Note that since the functions 1 and t belong to Y, the remark at the end
of Section II shows that Theorem 2 is applicable. Note, further, that relations
(49) and (50) are satisfied by {Tn(f;X)}~=I'Thus, we have

LEMMA 5. Let g(t), Y and Tn(f;x), n = 1,2, ... , be defined as above. Thenfor
every function fEY which is convex on [0, (0), we have

X E [0, 00); n = 1, 2, .... (63)

X E (0, ex)); n = 1,2, .. "

Similar considerations yield also the following

LEMMA 6. Let Y be defined as above. For each fEY define the Mirakyan
operators {Mn(f;x)}~=1> by

Mif;x) = ! f(~) (n;te-nx,
k~O

Then for every junction fEY which is convex on [0, (0), we have

Mn(f; x) > f(x), X E [0,(0); n = 1, 2, .... (64)

These results have been established by Karlin (4J by using different and
more complicated techniques. The complication is compensated, however,
by the fact that he derives at the same time convexity preserving properties
ofsuch operators, properties which are not derivable by the methods presented
here.

4. ApPROXIMAnONS ON (-00, 00) INVOLVING THE WEIERSTRASS KERNEL.

Let ir denote the set ofall functions f(t) which are continuous on (-00, 00)
and grow to infinity in such a way that

lim ff~;:r = 0,
n.... '" e

for alia. > O. (65)
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Let the positive linear operators Wn(f;x), n = 1,2, ... , be defined on if/' by

(
n)1/2 JcoWn(f; x) =:; -co f(t) e-n(t-x)2 dt, n= I, 2, .... (66)

(67)

These integrals clearly exist for f E if/', and the resulting functions are
defined on (-00,00).

Consider the ECT-system (1, t). It is obvious that I and t belong to if/'.
Simple computations yield

(
n)1/2 Jco (n)1/2 JcoWn(l,x) ==;. -co e-n(t-x)2dt = :; -co e-nt2 dt

(1)112 Ico= :;;. -co e-
s2

ds = I,

and

(
n)1/2 JcoWnCt;x)==:;;. _co t e-n(t-X)2 dt

(
n)1/2 Jco (n)1/2 fco=:;;. -co (t - x) e-n(t-X)2 dt + x :;;. -co e-n(t-X)2 dt

(
n)1/2 JCO=:;;. -co se-

ns2
ds + x

=x. (68)

Appealing to the remark at the end of Section II, we see that Theorem 2 is
applicable. Thus, using relations (67)-(68), we obtain

LEMMA 7. Let f(t) E if/' be convex on (-00,00). Then

Wif; x) ;;;. f(x), -00 < x < 00; n = 1,2, ...,

where Wn(f;x), n = I, 2, ... , are defined as in (66).

We shall now prove that the "converse" result holds as well.
It is easy to demonstrate the strong centeredness of the sequence

{WnCf;x)}:'=1 on (-00, 00). However, this will not be sufficient under the present
circumstances, since an infinite interval and unbounded functions are con
sidered.

Retracing the proof of Theorem 4, we observe that the crucial steps are
inequalities (34) and the relations following them. In order to be able to draw
similar conclusions, we shall prove the following

LEMMA 8. Let Y be a point on the real line, and let

dfin(t) = dfl-n(Y; 1) = (nj1T)l/2 e-n(t-y)2 dt.
29
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If f E if/, then for each fixed pair ofvalues YJ > 8 > 0, we have

r jf(t)j dfi,,(t)
lim y+'1 -- =0
" .... 00 fi,,[Y + 8, Y + YJ] ,

r-'1 If(t)1 dfi,,(t)
lim -00 = o.
" .... 00 fi,,[Y - 7], Y - 0]

(69)

Proof We prove the right-hand limit relation. The other one can be similarly
proved.

Condition (65) implies that for each ex > 0, there exists a c, such that

for all t.

Using this inequality, we can obtain an upper bound for the numerator in
the right-hand of (69). Choosing ex < 1, we find

J'" If(t)1 dfin(t) ~ c(n/1T)1/2 J'" ect(t-yj2 e-n(t-y)2 dt
~'1 ~'1

= c(n/1T)1/2 J: ects2 e-ns2 ds.

Using now the fact that in the interval of integration s > 7], we deduce that this
expression is smaller than

c(n/1T)1/2. 1/1] J: s es2 (ct-n) ds.

Combining these estimates and performing the integration, we have

'" ()1/2 1 ( )1/2J If(t)1 dfinCt) ~ ~!! .-- e'12(ct-n) = ~!! e-n'1\
~'1 1] 1T n - ex n - ex 1T

where CI is a constant (independent of n).
On the other hand, the following estimate for the denominator can be

obtained by using the mean value theorem:

where S < g< 1].
Thus, for each n, the quotient on the right in (69) is smaller than

[cl/(n - ex)]e-n("I2-g2),

where g< 1] and Cj is a constant. Since this quotient clearly tends to zero as n
tends to infinity, the right-hand limit relation of (69) is established.
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With the aid of Lemma 8 we can prove
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LEMMA 9. Let J(t) E "/fI, and let the operators Wn(f;x), n = 1, 2, ... , be
defined as in (66). If

Wn(f; x) ;;. f(x), -00 < x < 00; n = 1, 2, ..., (70)

then f(x) is convex on (-00,00).

Proof The proofproceeds with arguments similar to those used in the proof
of Theorem 4. Repeating the construction used there, and noting that here
Uo:= 1 and u\ =: t, we find that there exists a linear function I(x) := o:X + f3 + M
which satisfies (30)-(32). We next introduce the definitions employed in (33),
with the exception of Mo.

Note that J(t) - I(t) E "/fl. Thus, by virtue of Lemma 8, for € = mo/2, we
can choose N such that for n > N,

(71)

J:11 1

If(t) -/(t)l diln(t) < (mo/2) iln[Y -7]1' Y - 011·

Using relations (32)-(33) and (71), we obtain the following chain of inequali
ties for n > N:

WnCl- f; y) = 5:", (/- f)diln

f
Y+112 fY-112;;. (I - f) diln + (I - f)diln
y+lh Y-1)2

[f
Y-'1 1 fro ]- \1- f \diln + \1- J Idiln
-'" Y+1)2

;;. mo{iln[Y - 7]i> Y - 011 + iln[Y + 02, Y + 7]2])

- [f
Y
-TjI 11- fl diln + fro 11- fl diln]

-'" Y+Tj2

fY-TjI f'"> Il- fl diln + 11- fl diln;;' o.
-00 Y+Tj2

The rest of the proof is identical with the end of the proof of Theorem 4.

We next turn to the monotonicity properties discussed in Theorem 5, and
prove the analogous results here.

LEMMA 10. Let f(t) E"/fI be convex on (-00, (0). Then

-00 < x < co; n = 1,2, .... (72)
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Proof This lemma can be proved by appealing (after making some simple
modifications) to the previously mentioned theorem of Marshall and Proschan
(see [4J, Theorem 3.8).

We shall, however, present another simple proof, making use of the tech
niques of dual convexity cones. It has been shown (see [5]) that sufficient
conditions for a measure dfJ- to satisfy

for all convex functions (under suitable growth conditions which ensure the
existence of the integrals involved) are that

n= 1, 2, ... ,

and that dp, has two sign changes, with last sign +. It is a matter of simple
computation to convince oneself that the measure

[(;YI2 e-n(t-X)2 _ (n: 1yl2 e-<n+O(t-X)2]dt

has these properties for all n ;;;. 1. Thus,

f:oo 1(t)[(;r2r n<t-X)2 - (n: lyl2 r<n+l)(t-x)2]dt;;;. 0,

for all convex functions of "fJ/. This is equivalent to the conclusion of the
lemma.

We next remark, that for all IE "fJ/,

lim Wil; x) = I(x),
n->oo

-Cf) < x < Cf). (73)

The proof of this statement is standard, and is therefore omitted.

Observe that an analogue of Theorem 5 can be deduced from Lemma 9
by using relation (73).

We summarize the result of this observation and Lemmas 7, 9 and 10, in
the form of

THEOREM 8. Let l(t) E "fJ/ and let Wn(f;x), n = 1, 2, ... , be defined as in
(66). Then

(a) A necessary and sufficient condition lor I to be convex on (-co, co) is
that WnCf;x);;;. f(x),for all nand x.

(b) A necessary and sufficient condition lor I to be convex on (-co, co) is
that Wn(f;x);;;. Wn+I(f;x),for all nand x.
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Noting that a function convex on (-00,00) cannot be bounded unless it is
a constant, we can deduce the following

COROLLARY. Let f(t) be a bounded and continuous function on (-00,00)
which does not reduce to a constant. Then for each real point y, there exist
sequences {nih"" and{mlh "" such that

i= 1,2, ...,
and

i= 1, 2, ....

Note added in proof After this paper had been submitted for publication,
the "converse" theorem for the special case of the Bernstein polynomials was
indepently proved by L. Kosmak.
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